PHYSICAL PROPERTIES

Written By Aubrey Whymark 2017
In this section we study the physical properties of tektites. This includes things like colour, size, specific gravity, bubbles, etc. If you are familiar with the properties of tektites then it is easier to differentiate tektites from other rocks. One of the commonest questions is about what colour tektites are and why? So, this is where we will start in this section.

References for sub-pages

Albin E. F., Norman M. D., Roden M. F. 1996. Geochemistry of Georgia Tektites: Evidence for a Compositionally Diverse Source. Meteoritics & Planetary Science. 31: A5-A6. (Abstract).

Artemieva N. A., Pierazzo E. 2003. Oblique impact and its ejecta - numerical modelling. Impact Cratering: Bridging the Gap Between Modeling and Observations: Abstract #8022.

Baker G., Forster H. C. 1943. The specific gravity relationships of australites. American Journal of Science. 241: 377-406.

Barnes V. E., Russell R. V. 1966. Devitrification of glass around collapsed bubbles in tektites. Geochimica et Cosmochimica Acta. 30: 143-152. Also in Barnes, V. E. and Barnes M. A. (Eds.) 1973. Benchmark Papers in Geology: Tektites. Dowden, Hutchinson & Ross, Inc.

Beyer H. O.  1940 (re-published 1943). Philippine tektites and the tektite problem in general. Popular Astronomy. 48 (1 - January 1940): 43-48. Also in: Annual Report Smithsonian Institution, 1942: 253-259.

Bouška V. 1994. Moldavites, the Czech tektites. Stylizace, Prague. pp. 69.

Bouška V., Ulrych J. 1984. Electron microprobe analyses of two-coloured moldavites. Journal of Non-Crystalline Solids. Natural Glasses. Proceedings of the International Conference on Glass in Planetary and Geological Phenomena. 67: 375-381.

Centolanzi F. J. 1969. Maximum tektite size as limited by thermal stress and aerodynamic loads. Journal of Geophysical Research. 74 (27): 6723-6736.

Chapman D. R. 1964. On the unity and origin of the Australasian tektites. Geochimica et Cosmochimica Acta. 28 (6): 841-880.

Chapman D. R., Larson H. K., Scheiber L. C. 1964. Population polygon of tektite specific gravity for various localities in Australasia. Geochimica et Cosmochimica Acta. 28 (6): 821-839. Also in:  Barnes, V. E. and Barnes M. A. (Eds.) 1973. Benchmark Papers in Geology: Tektites. Dowden, Hutchinson & Ross, Inc. Also as: NASA Report No. NASA-TM-X-51109.

Engelhardt W. von, Berthold C., Wenzel T., Dehner T. 2005. Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sand vaporized by the Ries impact. Geochimica et Cosmochimica Acta. 69 (23): 5611-5626.

Fesmire B. 2008. Abbe Number … What is it? Eye Care Professional Magazine.
http://www.ecpmag.com/1webmagazine/2008/08aug/content/through_the_lens/abbe-number.asp

Fudali R. F. 1981. The major element chemistry of Libyan Desert glass and the mineralogy of its precursor. Meteoritics. 16: 247-259.

Glass B. P., Koeberl C. 1989. Trace element study of high- and low-refractive index Muong Nong-type tektites from Indochina. Meteoritics. 24: 143-146.

Jessberger E., Gentner W. 1972. Mass spectrometric analysis of gas inclusions in Muong Nong glass and Libyan Desert Glass. Earth and Planetary Science Letters. 14: 221-225.

King E. A. Jr., Bouška V. 1968. Electron microprobe analysis of a two-colored moldavite from Lipí-Slávče (Bohemia), Czechoslovakia. 23rd International Geological Congress, Prague. 13: 37-41.

Koeberl C. 1986. Geochemistry of tektites and impact glasses. Annual Review of Earth and Planetary Sciences. 14: 323-350.

Koeberl C. 1988. The origin of tektites: a geochemical discussion. Proceedings of the National Institute of Polar Research Symposium on Antarctic Meteorites. 1: 261-290.

Koeberl C. 1990. The geochemistry of tektites: an overview. Tectonophysics. Special Issue. Proceedings of the Workshop on Cryptoexplosions and Catastrophes in the Geological Record, with a special focus on the Vredefort Structure. 171 (1/4): 405-422.

Koeberl C., Kluger F., Kiesl W. 1984b. Geochemistry of Muong Nong-type tektites V: unusual ferric/ferrous ratio. 47th Annual Meeting of the Meteoritical Society, Abstracts and Program: 132 (0-3). Repeated in: Meteoritics. 19: 253-254. (Abstract).

Matsuda J. -I, Matsubara K., Yajima H., Yamamoto K. 1989. Anomalous Ne enrichment in obsidians and Darwin glass: diffusion of noble gases in silica-rich glasses. Geochimica et Cosmochimica Acta. 53 (11): 3025-3033.

Matsuda J. -I, Matsubara K., Koeberl C. 1993. Origin of tektites: Constraints from heavy noble gas concentrations. Meteoritics. 28 (4): 586-589.

Matsuda J., Maruoka T., Pinti D. L., Koeberl C. 1995. A Philippinite with an unusually large bubble: gas pressure and noble gas composition. Meteoritics. 30 (5): 542. (Abstract).

Matsuda J., Maruoka T., Pinti D. L., Koeberl C. 1996. Noble gas study of a philippinite with an unusually large bubble. Meteoritics & Planetary Science. 31: 273-277.

McColl D. H. 2008. Tektite bubbles from Australia. Meteorite Magazine. 14 (2). 40-42.

Melosh H. J., Artemieva N. 2004. How Does Tektite Glass Lose Its Water? Abstracts of the Lunar and Planetary Science Conference. 35th: Abstract #1723.

Mizote S., Matsumoto T., Matsuda J., Koeberl C. 2003. Noble gases in Muong Nong-type tektites: their implication. Meteoritics & Planetary Science. 38 (5): 747-758.

Müller O., Gentner W. 1968. Gas content in bubbles of tektites and other natural glasses. Earth and Planetary Science Letters. 4: 406-410.

O'Keefe J. A. 1963. The origin of tektites. In: O'Keefe J. A (ed.) Tektites. University of Chicago Press, Chicago. 167-188.

O'Keefe J. A. 1964. Water in tektite glass. Journal of Geophysical Research. 69 (17): 3701-3707.

Povenmire H. 2003b. Tektites A Cosmic Enigma. Published by Florida Fireball Network. 209 pages.

Saferstein R. (Ed.). 1982. Forensic Science Handbook. Prentice-Hall, Englewood Cliffs, NJ, 1982; pp 139-183.

Scheiber L. C. 1970. Comparisons of tektite polygons of bulk specific gravity, true material specific gravity, and refractive index. Journal of Geophysical Research. 75 (35): 7513-7515.

Scholze H. 1968. GEKT. Int. J. Silikate. 19: 389.

Scrivenor J. B. 1916. Two large obsidianites from the Raffles Museum, Singapore, and now in the Geological Department, F.M.S. Geological Magazine. New Series. Decade 6, Volume 3 (5): 145-146.

Scrivenor J. B. 1931. The geology of Malaya. London. 181-183.

Shipway A., Shipway S. 2008. Pressure at altitude. Internet. http://www.calctool.org/CALC/
phys/default/pres_at_alt

Suess H. E. 1951. Gas content and age of tektites. Geochimica et Cosmochimica Acta. 2 (1): 76-79.

Scientific Working group for Materials Analysis (SWGMAT). 2004. Glass Refractive Index Determination. Web address: http://www.swgmat.org /Glass%20Refractive%20Index%20Dete rmination.pdf.

Taylor H. P. Jr., Epstein S. 1969. Correlations between 18O/16O ratios and chemical compositions of tektites. Journal of Geophysical Research. 74 (27): 6834-6844. Also in Barnes, V. E. and Barnes M. A. (Eds.) 1973. Benchmark Papers in Geology: Tektites. Dowden, Hutchinson & Ross, Inc.

Wondraczek L., Gross G. -P., Heide G., Kloess G., Frischat G. H. 2003. Abbe numbers and refractive indices of tektites and volcanic glasses. Journal of Non-Crystalline Solids. 323 (1-3): 127-130.

Zähringer J., Gentner W. 1963. Radiogenic and atmospheric argon content of tektites. Nature. 199 (4893): 583.

Bubbles

Most tektites contain bubbles and there is some degree of predictability about the bubble arrangement. Proximal tektites, formed from the lowest temperature, highest viscosity melt, are the most bubble-rich of the tektite groups. By measuring the specific gravity of a tektite you can get a pretty accurate idea of bubble content. X-rays will reveal the bubbles.
 

Colour

In transmitted light tektites vary from a yellowish green to various shades of green to brownish-olive-coffee colours with a greenish tinge. A greenish hue is often indicative of tektites whereas grey or lavander colours or brownish-grey colours are typical of terrestrial obsidian.